联系我们

新闻投稿:jingjing@enec.net

商务合作:coco@enec.net

搜索
下载亿恩app

揭秘大数据玩家eBay:猜出你的购买欲

本文来自:亿恩网原创

作者:文亮

2014-09-09 09:26

引言 在网络世界,数据就是金钱。作为全球最大的拍卖网站,eBay对这一点深有体会。眼下,eBay对各种在线数据的分析无所不至,就像在每个顾客前面安装了摄像头一般。毫无疑问,eBay拥有的数据量是惊人的。其每天都要处理10 ...


      在网络世界,数据就是金钱。作为全球最大的拍卖网站,eBay对这一点深有体会。眼下,eBay对各种在线数据的分析无所不至,就像在每个顾客前面安装了摄像头一般。毫无疑问,eBay拥有的数据量是惊人的。其每天都要处理100PB的数据,其中包括50TB的机器数据。可以说,eBay每天都面临着天文数字般的大数据挑战。


      早在2006年,eBay就成立了大数据分析平台。为了准确分析用户的购物行为,eBay定义了成百上千种类型的数据,并以此对顾客的行为进行跟踪分析。然而,这同时也为eBay带来了新的挑战。要知道,公司的数据量多到难以想象,没有人能分析消化这么多的数据,也没有人能基于所有数据建立起模型。事实上,eBay真正应用到的,只是其收集的数据中的一小部分。“剩余的数据,eBay或是将其丢弃,或是将其存储起来。因为说不定哪天,科技实现了突破,这些数据就会变得有用。”eBay大中华区CEO林奕彰指出。
那么目前,eBay是如何利用这些数据,来促进业务创新和利润增长的呢?

为用户“画像”

      eBay拥有近2亿的用户,网站的商品清单项目则有3万多类。在平台的日常交易中,eBay几乎每秒都要处理数千美元。而这些交易数据,其实只是eBay全站数据信息总量的“冰山一角”。

      基于大数据分析,eBay每天要回答的问题有很多,比如,“昨天最热门的搜索商品是什么?”而即便是这样的简单问题,都需要涉及处理五十亿的页面浏览量。从这个角度看,任何一个基本的业务问题,对公司来说都是一个相当巨大的问题。

      就eBay如何利用大数据来增加在线交易,林奕彰举了一个典型的例子。譬如,一位年轻的女性早上10点在星巴克浏览eBay网站,eBay应该推送给她什么样的商品呢?

      “就这几个信息点,我们其实已经做了不少研究。”林奕彰说,“事实上,用户早晨10点、中午12点,或是晚上7点,她浏览的商品是不同的;在餐厅或是在家里,同样会对浏览和搜索产生影响;此外,还有用户的年龄、当时的天气等等,都会对购物产生影响。eBay要做的,就是学习不同情景下的不同购物模式,并推送给用户最想要的商品。”

      据悉,eBay可以从用户以往的浏览记录里“猜”她想要什么样的商品,也可以从设定的成百上千种情景模型中计算出用户可能的需求;或是对照另一位有着相似特点的女性用户,看她当时买过什么样的商品,从而推断出这位用户潜在的需求。在综合各种考量因素后,eBay的后台需要在短短几秒内将商品页面推送给用户。这意味着,eBay的系统需要有非常快的运算速度。

      这种运算模型,有相当一部分人为的因素。比如,机器可以搜集用户的上万个数据,但eBay的工程师可以定义其中的100个数据为有效数据,而模型则建立在这些有效数据之上。此外,当计算机自动“学习”分析各种数据形成的趋势时,eBay需要将机器学习的逻辑设定在与商品交易相关的行为上。

      除了通过大数据为用户“画像”而向其推送有针对性的商品,eBay此前还尝试利用大数据进行搜索引擎的优化。

      具体说来,eBay可以把握用户的行为模式,使搜索引擎更加“直觉化”。如果时间倒退几年,用户在使用eBay的搜索引擎时,会发现它只能理解字面的意思,并按照字面意思寻找。很多时候,搜索引擎并不能理解用户的真实意图。但现在,eBay正试着改变或重写用户的搜索请求,增加同义词或替换语句,从而给出更相关性的内容,并由此增加在线交易量。而这背后,统统离不开大数据的支持。

为商家提供“情报”

      基于用户购物的数据,eBay同样会给商家提供各式各样的“情报”。比如,eBay会告诉制造商用户正在网上搜索什么商品,或是各种出口行业的数据,制造商会立刻对此做出反应。

      很多时候,eBay会根据自身或其他电商网站的交易情况,向商家建议其应该销售的品类。“这也是eBay大中华区正在做的工作,”林奕彰称,“比如,一个中国的商家希望将产品卖到澳洲,我们通过数据分析可以告诉他,他一个月大约可以卖出多少产品,定价应该在什么范围内,市面上还有多少商家在卖同样的产品,他的市场占有率大概是多少。”

      在此基础上,eBay还试图算出商家的补货频率。事实上,海外仓储是商家非常头痛的问题,一旦计算失误,便可能造成库存积压或缺货。而在eBay,一旦用户下单后发现商家缺货,将是非常严重的问题。这种情况下,eBay可以通过过往的数据分析,得出商家第一批货的大概销量,以及按照过去销货的速度什么时候应该补货,物流的时间又是多久。通过这些数据的计算,eBay可以测算出商家补货的逻辑。

      这些数据分析,对于商家开拓新的销售品类非常管用。因为通常情况下,商家需要四五个月,才能摸清楚一种货物的淡旺季销量,及其在各个地区的受欢迎程度。

      当然,eBay所做的只是为商家提供各种潜在的商机,至于卖家是否愿意投入生产,或能否找到合适的供应商进货,仍需要他们自己去完成。很多时候,eBay推荐商家销售200个新品类,而最终商家只能找到50种新产品的供应商。

      除此之外,凭借平台上产生的各种信息,eBay还可以扮演“品管(品质管理)”的角色。举例来说,一个卖家要在eBay上卖1000个产品,当它卖到50个产品的时候,有5个产品出了问题;卖到200个产品的时候,有20个产品出了问题;卖到400个产品的时候,有40个产品出现质量问题,以此类推。而eBay要做的,就是在其早期出现问题的时候,就及时提醒卖家。

      进一步说,当卖家卖掉10个、20个产品的时候,eBay就要根据退货率、买家评论等把可能的问题检测出来。与此同时,eBay会提醒卖家,让其监督供应商改进品质,或选择将商品下架,或是修改物品的描述。

      在理想状态下,这种品管系统会形成一个大数据的循环,并帮助卖家减少退货,销售更多的商品。假如卖家在收到这样的通知后依旧我行我素,eBay就会认为这样的卖家并不重视品管,到了一定阶段,eBay会对其实施交易“配额”,限制其交易量。

“品管的难点在于,我需要通过数据模型在卖家交易量很少的时候就发现问题。这种早期预测涉及复杂的运算。”林奕彰表示,“一旦交易量大了,卖家自己也会统计退货率,之前的损失也就无可挽回。”

试错与挑战

      和其他在线交易平台一样,eBay对假货亦十分敏感。眼下,公司试图通过大数据技术,让系统“智能”地识别出假货。

      实际上,“网络打假”工作并不容易。要知道,假货常常以各种形态出现在网络上,且屡禁不止。以Rolex为例,假货商家可能在单词中增加一个空格,也可能将其中两个字母互换位置,甚至名称里根本不出现Rolex,只是图片展示出Rolex手表的样子。eBay上有如此多的品牌,自然有形形色色的假货充斥其中。这种情况下,单是靠在商品名称或描述里抓关键词,根本抓不住假货。

      而eBay眼下做的,就是通过数据分析建立起一种模型或规则,假如商家的交易符合这种规则或特征,便有可能是在卖假货。

      打个比方,当一个卖家的商品卖的很便宜,卖得很快,但后面的抱怨和退货很多,系统就会把这个“可疑”的模式识别出来,然后再由工作人员去判断,这个卖家是否在卖假货。换言之,“即便数据的量再大,卖假货的人都有相对固定的模式。”林奕彰称。而通过这种方式,eBay有效地鉴别出不少假货商家。

      不过,林奕彰并不讳言,这种大数据分析方法亦有其弊端。“就假货问题来说,这种方式只能在事后将问题查出来,而无法事先预测。”他表示,“这不是那么容易解决的问题,因为无论用什么样的模型去套,假货交易总是能先骗你一阵子。”

      除了分析的滞后性,eBay的大数据挑战还体现在庞大的数据处理上。尽管企业数据仓库为查询提供了巨大性能,但它仍无法满足eBay存储和灵活处理的需要。要知道,这些系统的造价相当昂贵,当eBay每天增加50TB的数据时,其成本是相当高昂的。

      在此基础上,eBay收集的相当一部分数据,在目前看来是无用的数据。毕竟,数据采集得越多,变量越多,而由此带来的“数据噪音”也越多,模型越失真。从这个角度看,eBay要做的是记录那些有意义的数据,并销毁那些不需要的信息。问题在于,eBay要分析的85%的问题都是新的或未知的,“eBay并不知道哪些信息未来或许会有用,”林奕彰坦言,“那些现在看起来无效的数据,明后年可能就会随着科技进步被消化,我们现在只能先把这些数据储存起来。”

      但另一厢,假如将所有信息都储存起来,那么eBay每个月都会新增数以亿计的数据信息。在如此浩瀚的数据海洋中,分析工作根本无从下手。因此对eBay来说,这是一个必须平衡的难题。

      需要指出的是,eBay当下的分析模型也还不够完美。无论是“猜”用户,还是分析商家在eBay上的生意,eBay猜错的情况非常非常多。对于这一点,林奕彰举了信用卡的例子。在他看来,“银行其实是运用大数据最厉害的,但无论风控模型怎么完美,全球依然有2%左右的信用卡赔率。”况且,eBay用的并不是成熟机构认证过的模型,很多时候要靠自己去猜,那么误差也就不足为奇。


(编辑:亿恩 Change)

更多精彩内容,请关注亿恩微信:enecnews 每天为您推送最新、最热干货!

更多精彩内容,请关注亿恩网微信公众号: (ENECNEWS

扫码关注二维码

) 每天为您推送最新,最热干货!
声明:亿恩网原创稿件,未经授权不得以任何方式转发。转载请联系:jingjing@enec.net
分享:
2.55w 0 0
网友评论 文明上网理性发言,请遵守评论服务协议
(0) 条评论
评论
热门词条

选品

起诉

香港

网站

购物APP

附加费

用户体验

一日跨境

特朗普

马来西亚

贸易战

更新

热卖品

欧洲电商

游戏

诈骗

DIY

欺诈

巴西

非洲

社群

扫码加入社群

公众号

扫一扫
关注亿恩公众号

顶部